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Abstract. The forecasting of inundation levels during typheaequires that multiple objectives be taken iatocount,
including the forecasting capacity with regard &oiations in water level throughout the entire eatevent, the accuracy
that can be attained in forecasting peak waterldemed the time at which peak water levels ardylike occur. This paper
proposed a means of forecasting inundation levelgal-time using monitoring data from a water-leyauging network.
ARMAX was used to construct water-level forecastdels for each gauging station using input variabtesduding
cumulative rainfall and water level data from otlgauging stations in the network. Analysis of tlwerelation between
cumulative rainfall and water level data makessgible to obtain an approximation as to the cutivdauration of rainfall
and time lags associated with each gauging stafioalyses on water levels as well as on cumulatamefall enable the
identification ofassociate sites pertained to each gauging stdtairshare high correlations with regard to wateell@end
low mutual information with regard to cumulativanfall. Water level data from associate sites isduas a second input
variable for the water-level forecast model of theget site. Three indices were considered in #iecfon of an optimal
model: the coefficient of efficiency (CE), errortime stage of peak water level (ESP), and reldiine shift (RTS). We used
a multi-objective genetic algorithm to derive antioy@al Pareto set of models capable of performingdl wethe three
objectives. A case study was conducted on the Xiraraa of Yilan County, Taiwan in which optimal emtevel forecast
models were established for each of the four wlatezt gauging stations in the area. Test resultsahstrate that the model
best able to satisfy PE exhibited significant tishét, whereas the models best able to satisfy @QERITS provide accurate

forecasts of inundations when variations in wag®el are less extreme.

Keyword: ARMAX, Multi-objective optimization, GenietAlgorithm, Water-level gauging network, Inundatj Typhoon

1 Introduction

Typhoons are common weather events in subtropétabns of the Pacific, between July and Octobeawleains carried
in by typhoons often lead to the severe inundatibfow-lying areas, which can damage property anehethreaten the

safety of human lives. Limitations in funding favrestruction of flood control systems pose limitdhe protective capacity
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of structural measures for disaster mitigation. Wtree scale of a typhoon exceeds construction deisigts, non-structural
means are required to prevent disasters assoeidtetyphoons. The real-time forecasting of chanigeéaundation depth in
the hours after a typhoon is a crucial factor mphlanning of relief operations.

Considerable research has been conducted on inomdamulations and forecasting techniques, moswbich can be
roughly divided into two approaches: numerical datians and black-box modellings. In numerical dations, various
physical phenomena that occur between rainfall ianddation are examined before carrying out thémakderivations
using mathematical analysis, after which solutiares obtained by numerical methods. This approad¢tased on a sound
theoretical foundation and enables a clear reptasen of the physical mechanisms associated witindation. The
accuracy of the results makes them particularhfulse the forecasting of inundation in the absené®nsite observation
data. However, this type of approach requires cemable computing resources and can be very timswroing, which
makes it difficult to provide forecast informatiam real-time for immediate disaster relief actiahsing typhoons. Black-
box modellings are implemented in an entirely défg manner. The process that occurs between Haémig inundation is
regarded as a black box, and no attempt is madederstand the underlying physical mechanisms.dRathe relationships
between inputs and outputs of the system are agdlgg a means of creating a black-box model. Aghdhis approach is
unable to explain the physical phenomena, howetvprovides an accurate representation of theiogighip between inputs
and outputs. Calculations can generally be comgletere rapidly (Karlsson and Yakowitz, 1987), anfbimation related
to future variations in water-level in inundateccas can be obtained in real-time, which can be inselg helpful to
decision making and disaster prevention.

A number of studies have applied black-box model¢he problems of inundation or flooding. Karunhnit al. (1994)
proposed a cascaderrelation algorithm for the selection of neuratwork architectures and a training algorithms and
obtained encouraging results with regard to flowdustion. Thirumalaiah and Deo (1998) proposedttaming of neural
networks using a selected sequence of previoud fidservations at a specific location to enablétiee flood forecasting.
Toth et al. (2000) compared the advantages andhliimns of Auto-Regressive Moving Average (ARMA)tificial Neural
Network (ANN), and the non-parametric nearest-nisigh method in rainfall-runoff forecasting. Theynctuded that time-
series analysis is far more accurate than simjatbpredictions of a heuristic nature. Changd &hen (2001) proposed a
counter-propagation fuzzy-neural network (CFNN)atalp of automatically generating rules for uselustering input data
to enable streamflow prediction. Nayak et al. (208 ployed fuzzy computation in the developmena agal-time flood
forecasting model. They concluded that the recarsise of a one-step-ahead forecast model to préolictusing longer
lead times produces results better than those \&hiasing independent fuzzy models for the foréogsdf flow under
various lead times. Chen et al. (2005) construetdlbod forecast model using an adaptive neuroyfumference system
(ANFIS). Their results demonstrated that ANFISuperior to back-propagation neural network (BPNRHmanowicz et al.
(2008) developed a data-based mechanistic methgygldlor the derivation of nonlinear dependence leenvwater levels
measured at gauging stations along a river. Ka.g2011) developed a flood model using varioosdl causative factors

using ANN techniques and geographic informatiornteaps(GIS) for the modeling and simulation of floptbne areas in the

2



10

15

20

25

30

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-1, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 23 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

southern parts of Peninsular Malaysia. Pan eR8ll 1) presented a real-time rainfall-inundatioreéasting model using a
hybrid neural network based on a synthetic datab&seindation potential. Shiri et al. (2012) comgxhthe performance of
gene expression programming (GEP), adaptive newrnyf inference systems (ANFIS), and artificial redunetworks
(ANNSs) in the forecasting of daily stream flow. Hheoncluded that the GEP model outperformed the Adfid ANFIS
models. Chen et al. (2012) utilized an ANN modedl @am ANFIS model to correct calculations in a twmensional
hydrodynamic model used for the prediction of stmunge height during typhoon events. Najafzadeh Zatui (2015)
proposed the use of a neuro-fuzzy-based group miethdata handling (NF-GMDH) as an adaptive leagnietwork for
the prediction of flow discharge in straight compdwchannels.

In this study, we sought to develop a method faer filrecasting of inundation levels, based on daienfa water-level
gauging network during typhoons. We also performerhse study in which crucial model input variablese obtained by
analyzing records from previous typhoons. Autorsgiree moving average with exogenous inputs (ARMAvEs used to
construct rainfall and water-level relationship ratsdof the gauging stations, and three indices ve@ned for the
evaluation of model performance. A Pareto optimadei set was identified for the three indices usanguulti-objective
genetic algorithm. Predicted water levels were camrag with measured data to exam the performantieadptimal models
subjected to each index.

This paper is organized as follows. The environ@ldmtckground of the study area is introduced ictiBe 2. In Section 3,
we explain ARMAX and the data analysis methods ueduhd suitable model input variables. We alsiwdduce the indices
used for the evaluation of the models. Sectionebgmts the method used to identify the Pareto aptinodel set for the
evaluation indices using a multi-objective genetigorithm. Section 5 discusses the forecasting lulfyaof the optimal
models for each objective based on search re€idisclusions follow in Section 6.

2 Study area

Yilan County (Fig. 1) is situated in the northeastpart of Taiwan. It has a sub-tropical monsodmate and is famed for
its rainy weather. With over 200 rain days per yé¢lae¢ annual average precipitation ranges betw@0 2and 2500 mm.
Yilan is bordered by mountains to the west and dhean to the east. Typhoons are common in sumnteraatumn.

Statistically, an average of two to three typhobid aiwan each year, 45% of which make landfal¥itran County (Pan et
al., 2014). Severe inundations quickly form in ltyirg areas during typhoons. Among the inundatioorp regions, the
area of Xinnan is one of the worst.

The Xinnan area (Fig. 1) is located near the moafhwo major waterways in the county: the Meifaidage waterway to
the north and the Lanyang River to the south. fdaiain dips to the east, and its eastern bordetsaihe Pacific. The
average elevation in the area is just about 2 nvalsea level. During typhoons, water levels intthe major waterways

rise swiftly from large inflows upriver. The levee§the two waterways prevent runoff in the areanfrbeing drained out



10

15

20

25

30

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-1, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 23 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

effectively, which soon leads to severe inundatidie safety and property of residents are in diskng typhoons, which
underlines the need for effective disaster prevantieasures.

In an attempt to better understand local inundatimmditions during typhoons, the Water Resourcesngyg established the
Surveillance Network for Typhoon Inundation in tKagnan Area (SNTIX) in 2011. The Network includesuf gauging
stations receiving water-level data on-site th@aamd a data transmission system receiving ptatigni observation data
from the QPESUMS (Quantitative Precipitation Estioraand Segregation using Multiple Sensor, Goudeal., 2002) of
the Central Weather Bureau. Table 1 lists detaitddarmation related to the gauging stations, theatmns of which are
marked in Fig. 1. SNTIX reports local inundatiowdés via radio transmission every 10 minutes dutymghoons, while
QPESUMS transmits ten-minute rainfall in the aréaiaternet connection at the same frequency. Eiguipresents the
water levels recorded by SNTIX at gauging statiansl the QPESUMS rainfall data during Typhoon Tram013.
QPESUMS was developed jointly by the Central Weaatiereau and the National Severe Storm Laboratbi$SL) in
2002, with a view to improving the accuracy of qtitative rainfall forecasts. QPESUMS comprises eiDbppler radar
stations, each of which scans a radius of appraeime®30 km. The system divides Taiwan into ¥88 grids, each
covering 1.2%1.25 km2. Rainfall estimation is achieved by olitagnreadings from 406 rainfall gauges and 45 ground
stations for adjustments. QPESUMS forecasts futairdall patterns by predicting the movement pathsloud cells. Data
is provided for a wide range of applications, imtithg typhoon rainfall forecasts (Lee et al., 20G6)r flooding forecasts
(Vieux et al., 2003), and landslide forecasts (Céteal., 2004).

Since its implementation, SNTIX has recorded dedenften typhoon events, as shown in Table 2. Intiatidto providing
rainfall and water level information at the timetbé& typhoon, these records can also be used wafewater-level forecast
models for gauging stations.

3 Model construction

To plant effective disaster prevention and religérations during typhoons, it is crucial that olas the capacity to forecast
inundation levels developing in the following houhs the Xinnan area, inundation develops swiftlyidg typhoons, so
forecasting must be quick and effective in ordepriavide sufficient lead time for decision makingaoperational planning.
Thus, we adopted the ARMAX black-box model for ttmmstruction of water-level forecast models forgiag stations. It
should be noted that during typhoons, responsesplkely more heavily on water-levels than on rundfe therefore based
the forecast model on this study in the relatiomgietween rainfall and water level rather thantenrelationship between
rainfall and runoff, as was common in many studMsreover, the rainfall and water level data instktudy was not
processed in the conventional manner, in whichdat& is normalized by the maximum and minimum albefore
performing model regression, considering the fhat these information cannot be obtained whilephdpn is in progress.
To enable real-time water-level forecasting dutiyjghoons, we designed the water-level forecast nasiag raw rainfall

and water level data as inputs with the forecasémlavel of the next time step as the output.
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3.1 ARMAX model

ARMAX (Box and Jenkins, 1976) is a linear black-barodel that merges the AR model (Yule, 1927) and Médel
(Slutsky, 1937) for time series analysis. It tak#e account the influence of other external vadgalin the forecasting of

future changes in dynamic systems. The model fslisvs:
AlQy(®) = XiZy Bi(@w; (t —nk;) + C(g)e(t) , 1)

wherey denotes the output of the systarpstands for the exogenous input for inputu indicates the number of inputs,
nk; is the time lag for each input,is the error term, and(q), B;(q), andC(q) are the polynomial functions composed of
time-shift operatoy.

In this studyy represents the water levels recorded at the ggwgiations. To make full use of monitoring datanfrthe
surveillance network, each water level model costdivo exogenous inputs: rainfall datafrom QPESUMS and water
level datau, from an associate gauging station. The structfitteomodel is determined by the number of termthefour
polynomial functionsA(q), B;(q), B»(gq), andC(q) and the time lags of the two exogenous inpuks, andnk,. The
coefficients of four polynomial function&(q), B;(q), B,(q), andC(q) can be obtained by calibrating rainfall and water

level data.

3.2 Determination of input variables

In this study, we set the cumulative rainfall as fiist input variable. After calculating the curative rainfall of various
durations from 1 hour to 30 hours, the resultssaifgected to correlation analysis using water lelath from the target site
to derive the correlation coefficient (CC), whichdefined as

n ) (VT
CCkxy) = covley) _ Yz (=) i=¥) , o
Oy SR G- B 0902

wherecov refers to the covariance between variable®dy; o, ando, are the standard deviationsxoéndy, respectively,
andn denotes the number of data points. CC ranges foto 1, which respectively indicate perfect negattorrelation
and perfect positive correlation betweeandy, while a CC value of 0 indicates the complete absef correlation.

Figures 3(a) through 3(d) present the results ofetation analysis pertaining to water-level datanf various gauging
stations and cumulative rainfall of various durasioThe black round dots in the figures mark therage CC values of each
typhoon event, and the tops and bottoms of theibdisate the maximum and minimum CC values ambegevents. The
variations in the average CC in the figures cleathpw that the average CC increases with the duraif cumulative
rainfall, reaches a peak, and then declines grduiis phenomenon is apparent in all of the gaggitations. However,
the duration of cumulative rainfall correspondingthhe peak average CC can vary. Table 3 lists #ad pverage CC, the
corresponding duration of cumulative rainfall, ahé maximum and minimum CCs measured at each sta4i® can be

seen, the peak average fluctuates roughly betwegmar@ 0.9, which indicates that a certain degfeeorelation exists

5



10

15

20

25

30

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-1, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 23 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

between water level and cumulative rainfall at $tetions. The table also shows that the duratioouafiulative rainfall
corresponding to the peak average CC is longetaiioas located further downward in the area. iRstance, the duration
of cumulative rainfall corresponding to the peakrage CC at the Zonnanxin station, which is atdrigjtound in the area,
is 18 hr, whereas the duration at the Meifu statishich is closest to the sea, is 25 hr. We spéetzat this might be
associated with the time needed for water to aggeegnd move downward. The table also presenigta dlecrease in the
peak average CC as the station falls closers tedheas well as a greater difference between théme and minimum
CC values. It is possible that this is because miatels at locations closer to the sea are infteednby ocean tides, which
somewhat reduces its correlation with cumulativefadi.

After identifying the duration of cumulative raitifavith the highest correlation for each gaugingtistin, we analyzed the
time lags between water levels and cumulative adlinfVe shifted back the cumulative rainfall dateedime step at a time
(each time step is 10 minutes) and calculated tBs ketween water level and cumulative rainfalldach station. Figures
4(a) through 4(d) display the results of cross-<&lation analysis for water levels and cumulativiefedl at each station. As
can be seen, the peak average CC for each statinmred at zero lag, and the average CC decreagbe &g lengthened.
This indicates that no time lag exists between wiateel and cumulative rainfall. Furthermore, tigufes show that as the
lag increased, not only the average but also theirman and minimum CCs decreased, and the differémteeen the
maximum and minimum CC4C(C) gradually increased. This demonstrates that lfaants the correlation between water
level and cumulative rainfall during typhoons diishres with the length of the lag.

To make full use of the water level records frora gauging stations, we identified an associateéostdbr each existing
station and used the water levels from the assoattion as a second input variable of the fotexexlels. Generally
speaking, the input and output of a model requinggher degree of correlation, while in betweenittpuit variables a lower
mutual information (MI) is expected (Bowden et &005; Talei et al., 2010; Maier et al., 2010) rder to ensure that the

information provided to the model from the inpute aot redundant. Ml is defined as

MI(x,y) = Hlog(“=lonly 3)

where C is the covariance matrix defined as

C C
_ Cxx ny , ( 4)
yx yy

whereC,, andC,,,, are the variance of variablesandy, respectivelyr,, andC,, are the covariance of variablesndy;
and|C| is the determinant of the covariance matrix. Anvdlue equal to 0 indicates complete independertedenx and
v, while a higher Ml value indicates stronger depsmue betweer andy (Fraser and Swinney, 1986; Moon et al., 1995).
To find an associate site with which the waterledeta has a high CC with that of the target sitélavhaving a low Mi
with the identified cumulative rainfall of that spfc site, we combined the two indices into

R=CC+(1—MI), )
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The MI value presents the degree of dependencesbatthe input variables; i.e., 1-MI reflects thgrée of independence
between input variables. The candidate site wighHighest R value was designated as the assodmt®rsa given target
site. This approach in which Ml is taken into aaaim the selection of model inputs has been engaldg previous studies
(Talei et al., 2010; Elshorbagy et al., 2010; Halgt2011).

5 Table 4 lists the event-averaged CCs between Watel data from each target site and their candidées, as well as the
event-averaged MI of the first input variable (iigentified cumulative rainfall) of the targetesiand the water level data
from the candidate sites. The table also preséetfRtvalues for each pair of sites. The asterisksthe highest R values
for each site, and the corresponding candidate siere those selected as associate sites. Theiasssites that were
eventually selected for each target site are dysplat the bottom of Table 4.

10 To elucidate the meaning of the time lag prior &miations in water level data from target sites Hradr associate sites, we
followed the previous analysis method in shiftingter level data from the associate sites one tieye & a time. We then
calculated the CCs between the water level data fhe target site and the associate site untileaehed 30 time steps. The
results in Fig. 5 show that the event-averaged &€sall highest at zero lag. As the lag increafesaverage, maximum,
and minimum CCs of each station decrease, andiffieesthce between the maximum and minimum CCs galylincreases.

15 This is a clear indication that no time lag exisetween variations in water level measured at tasges and at their
associate sites.

The above data analysis makes it possible to deterthe input variables of the water level modelsdach station as well
as their time lags, as shown in Table 5. The iimgtt variable is cumulative rainfall, and the dioa of cumulative rainfall
in the various stations are not the same; howelknf the time lags are 0. The second input véeiab water level data

20 from the associate site for which the time lagsadse 0.

3.3 Model evaluation

The performance of each model was evaluated ubathtee indices below.
(1) Nash-Sutcliffe Coefficient of Efficiency (CE)
The Nash-Sutcliffe Coefficient of Efficiency wasoposed by Nash and Sutcliffe (1970) to assessteedisting capacity of

25 hydrological models. It is defined as

— 1 _ Tr=1Vobs(£)—Yest ()]
CE 1 Z?:l[YObs(t)_f’obs]z ’ (6)
wherey,,, andy.s; denote the observed and estimated water leygls;is the average observed water level, and
indicates the number of data items. The CE valpeesents the goodness of fit between the obseradathd the forecast
results of the model; a CE value closer to 1 mélaausthe water-level forecasts more closely matehatbservation data.

30 (2) Error in the stage of peak water-level (ESP)
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ESP = |Yp,est_3’p,obs| , (7)

dp,ohs

In the formula abovey, ,,s andy, .;; denote the peak observed and estimated waters|enesdpectively, and, ,,; is the
peak observed water depth. ESP represents thelmtoeen the peak observed water level and thedsteesults of the
model. A smaller ESP value means that the estimztall water levels more closely match the obsevabges.

(3) Relative Time Shift (RTS)

Previous researches have shown that using hidtoidta to forecast future changes often resultsria shift errors between
the forecast and measured hydrographs (Dawson dlbg,\W999; Jain et al., 2004; de Vos and Rientp&€)5). To evaluate
the time shift error of forecast water levels, wifted the forecast water level hydrograph backiltp 18 time steps and
then calculated the CE values. The time step gooreding to the highest CE value is the time shifore(d) of the water
level model. This method was also adopted by de afak Rientjes (2005) and Talei et al. (2010). Télative time shift
(RTS) of the models in this study was defined as

RTS = Li , (8)

t
whered denotes time shift error of the model, dnds the prediction lead time of the model. A snmalRT'S refers to a

smaller time shift error between the forecast dmskoved water levels.

3.4 Cross validation

We adopted cross validation (Geisser, 1993) fohdgm event validation and model calibration in ttigdy. We selected
single typhoon events for validation with the rggthoon events for model calibration. In turn, @lllithe typhoon events
were validated. The calculation of evaluation irediovere based on the validation results of eadotyp. The mean values

for all validated events produced the average pmdace of the models.

4 M ulti-objective optimization problem

For the evaluation of model performance, we useeetlindices: CE (to assess the capacity of a ntodsimulate entire
typhoon events), PE (to assess peak water lea#ld)RTS (to determine the time at which a peakmatel occurs). These
elements are crucial to disaster prevention ommratduring typhoons and must therefore be congidsiraultaneously.
Unfortunately, it is difficult to weigh the importae of each element. Thus, we employed multi-objectptimization to

search for models capable of performing well irtladee indices.

4.1 Objective functions and Design variables
The design goals included a larger CE and smalleai®l RTS. Thus, we defined the objective functisifiollows:

Obijective 1: minimize(1 — CE) , 9)
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Objective 2: minimizePE , (10)
Objective 3: minimizeRTS , (11)

whereCE, PE, andRTS denote the typhoon-event averages of the thréecisd

As mentioned previously, the structure of the ARMAXdel is determined by the polynomial functief(g), B; (q), B,(q),
andC(q) and the time lags of the two exogenous inputs,andnk,. The time lagspk, andnk,, can be derived from
previous data analysis. The analysis of time lagvden cumulative rainfall and water levels at thsogiate site shows that
the time lags between the two inputs and the outpuhe model are both 0. QPESUMS is able to pmvimrecasts on
rainfall in the following time step; therefore, vgetnk, to 0 in order to incorporate the rainfall predicis provided by
QPESUMS within the models. Because we have onlytiea monitoring values (rather than forecast ealy for the water
level at associate sites, therefore, wenggtto 1. Thus, the structure of the model is deteeahiby the remaining number of
terms in the polynomial functiomd&(q), B, (q), B,(q), andC(g). Thus, we set the design variables as the nunfiterros in
the four polynomial functions, which are integensl dimited the range of each design variable tevbenh 1 and 10 in order
to preserve the simplicity of the model.

4.2 Multi-objective Genetic Algorithm

A lack of continuous relationships between thecitme of the model and the objective function maikempossible to
obtain the optimal value of this problem using adignt-based method. Based on the characteristitteeqoroblem, we
employed a genetic algorithm (GA) as a tool forimfation, due to the fact that GAs do not requive Hessian matrix of
the objective function to derive the optimal saduatifor each design variable. Furthermore, the tfzat GAs can search for
global optimums (Goldberg, 1989) makes this anegmély suitable approach to the identification ofdeal model.

GAs are based on Darwin's theory of natural selactSince Holland (1973) developed a sound matheatdbundation
based on this principle, GAs have been widely &ppih a variety of fields to solve problems thatildonot otherwise be
solved using conventional methods. In GAs, theviilddials in a group are viewed as possible soluttortee problem under
discussion. The individuals are rated accordinthédr performance as they pertain to the objedtivetions and constraints.
Superior performance increases the chance of gpssigenes to the next generation. Through thisges the overall
performance of the population gradually evolves angroves. After evolving for several generatiomg]ividuals with
optimal genes (i.e., those that dominate the pdipula are adopted as the optimal solutions toptablem. GAs conduct
optimization by assessing the performance of inldigls in the population, which makes them ideallitesl to solving
problems with multiple objectives.

We employed the multi-objective genetic algorithmNatlab to search for the Pareto optimal set ef ititeger multi-
objective optimization problem. The optimal modet sontains models that perform well in all thredi¢ces. We set the
population size at 50 and the Pareto fraction 3%.0The maximum number of evolutionary generatimas 200, and the
GA was set to terminate after the results stalbedrfore than 20 generations.
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5 Result and discussion

The result of the multi-objective genetic algoritligna Pareto optimal set. All of the models in thét are un-dominated,
which means that at least one of their three irddi€gE, PE, and RTS) is not surpassed by that ofcdimgr model. We
selected the models with the best performancelithede indices from the Pareto optimal set, thsults of which are as
shown in Table 6. We listed three models for eamiging station and named them according to theation. For example
the models for Zongnanxin station are Z1, Z2, aBd Among the three model types, Model Type 1 addethe highest
average CE, Model Type 2 achieved the lowest agePdfy and Model Type 3 achieved the lowest aveRaAge. The table
lists four integer design variables for each modespectively indicating the number of termdditw), B, (¢q), B,(g), and
C(q). The table also displays the scores of each nmtggelon the three indices, wherein the score mavkgdan asterisk
achieved the optimal value for that index.

Using data from Typhoon Saola, a water-level fosegeas performed using the models of each gaudaigps with a lead
time of 3 hr. We then compared the results withdhserved values, as is shown in Figs. 6(a) thrd&{dh The results in
Fig. 6(a) show that the forecast water levels fithe three models of the Zhongnanxin station (fustieom the sea), are
roughly identical to the observed water levelsjdating that the forecast results are very accuidtesignificant differences
were observed among the forecast results of tlee timodel types.

The forecast results of the other three gaugintiostain Figs. 6(b), 6(c), and 6(d) by the threpety of models present
different characteristics. Model Type 2 (X2, S2dav2) shows good performance in predicting peakewévels while
exhibiting a time shift between the measured wigtegls and the water levels forecast. Model Tymbhasizes the need
to minimize error in peak water levels; therefates likely that variations in the water level &asts from this model
closely follow the changes in measured water lewéls a certain degree of lag. In contrast, Modghd 1 (Z1, X1, S1, and
M1) differs little from Type 3 (Z3, X3, S3, and M8) Figs. 6(b), 6(c), and 6(d), both of which asteigerfect forecasts as
water levels dropped but produce slight time lagysvater level rose. This is particularly appardrtha Sijie station in Fig.
6(c) and at the Meifu station in Fig. 6(d), wheratev levels rose swiftly. However, the time shiftoes presented by Model
Types 1 and 3 are still smaller than 3 hr. Congidethat the lead time used in these model forecaas 3 hr, any time shift
error of less than 3 hr means that the resulténretference value for disaster prevention openatituring typhoons.

In the forecasting of peak water levels, the resultFigs. 6(b), 6(c), and 6(d) show Model Types Zuperior over Model
Types 1 and 3. On the other hand, in forecastiadithe at which peak water levels are likely tows¢cdodel Types 1 and 3
are more accurate at all four stations. The ahtititpccurately determine the peak water levelsebkag the arrival time of
the peaks is extremely helpful for response opmmatduring typhoons. All the three models providéuable information

and thus should all be considered in practice.
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6 Conclusion

This study developed a simple approach to the &stérg of variations in inundation levels duringttgons. The proposed
method uses a network of water-level gauging statio conjunction with rainfall forecast data. ARMAXas used to
construct water-level forecast models at each gausite. Suitable input variables and lags in tlaewlevel models were
identified by analyzing historical data from typmsoin the past. A multi-objective genetic algoritvas used to derive a
Pareto optimal set of models capable of performiadj in three indices (CE, PE, and RTS) as welicaglentify the water-
level forecast model that obtained the best restlsach gauging station. Comparisons with measwegdr levels shows
that the model emphasizing PE resulted in accymadiction on the peak water levels yet noticediohe lag. The models
emphasizing CE and RTS provided an accurate indicaftf variations in water levels with no lag whikater levels were
dropping, yet a slight time lag when water levelsrevrising. The models emphasizing CE or RTS dysglagood
performance in forecasting the time at which peakewlevels would occur, while the models emphagi®E show good
prediction on peak water levels. All three typesnuddels provide information crucial to disastervergion and relief

operations in a timely manner during typhoons dwus should all be considered in practice.
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Table 1 Water-level gauging network in Xinnan area
. . Location Elevation above sea

Gauging station - - level

Longitude Latitude evel (m)
Zhongnanxin 121.7877 24.7239 1.94
Xinnan 121.8012 24.7250 0.78
Sijie 121.8083 24.7234 0.13
Meifu 121.8156 24.7191 0.23

Table 2 Historical typhoon eventsrecorded by SNTIX

Maximum
Affecting  Cumulative  rainfall
period (hr) rainfall (mm) intensity

Time of official typhoon
Typhoon Year sea warning issued
h/day/month (UTC)

(mm/hr)
Songda 2011 0230/27/May 36 191.6 28.5
Nanmadol 2011 0530/27/Aug 99 159.6 26.5
Saola 2012 2030/30/Jul 90 506.1 35.5
Soulik 2013 0830/11/3ul 63 138.0 30.0
Trami 2013 1130/20/Aug 45 160.1 215
Usagi 2013 2330/19/Sep 63 158.2 24.0
Matmo 2014 1730/21/3ul 54 107.5 34.0
Fung-wong 2014 0830/19/Sep 72 79.5 37.5
Soudelor 2015 1130/6/Aug 69 462.5 86.0
Dujuan 2015 0830/27/Sep 57 226.0 41.5

Table 3 Correlation coefficient (CC) between water-level and cumulative rainfall with average peak and the associated duration of
cumulativerainfall

CC between water-level and cumulative rainfall Duration of
Gauging site Average peak Maximum Minimum ACC cumula(tki]\?)a rainfall
Zongnanxin 0.910 0.952 0.856 0.096 18
Xinnan 0.822 0.956 0.651 0.305 20
Sijie 0.698 0.973 0.297 0.675 20
Meifu 0.724 0.963 0.014 0.948 25
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Table 4 Selection of associate site for the second model input based on CC and MI

Target site

Candidate site

CC between cross-site water-levels

MI between water-level input from
candidate site and cumulative rainfall
input for target site

R (* highest)

Zongnan xinnan  Sijie Meifu Zongnan- xinnan  Sijie Meifu Zongnan- xinnan  Sijie Meifu
-xin xin xin
Zongnanxin NA 0.815 0.763 0.703 NA 0.695 0.655 0.589 NA 1.120 1.108 1.114
Xinnan 0.815 NA 0.944 0951 0.880 NA 0.721  0.657 0.935 NA 1.223* 1.295*
Sijie 0.763 0.944 NA 0.949 0.880 0.766 NA 0.657 0.883 1.178 NA 1.292
Meifu 0.703 0.951 0.949 NA 0.678 0.814 0.728 NA 1.024* 1.137* 1.221 NA
Selected associate Meify  Meifu  Xinnan Xinnan

site

Table 5 Input variables for the water-level forecast models

Inputs
Gauging site Cumulative rainfall (mm) Water level (m)
Duration (hr) Lag Associate site Lag
Zongnanxin 18 0 Meifu 0
Xinnan 20 0 Meifu 0
Sijie 20 0 Xinnan 0
Meifu 25 0 Xinnan 0
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Table 6 M odels selected from the Pareto optimal model set using the best scoresfor each of the three objectives (* best score)
Gauging site Model Objective Design CE PE TS
variables

z1  maxCE [994 8] 0.815* 0.144  0.422
Zongnanxin z2 ~ min PE [1411] 0.732  0.033* 0.844
z3 mMnRTS [101086] 0.692 0.194  0.356*
X1 ~ maxCE [10463] 0.820* 0.062 0.378
Xinnan X2 ~ minPE [1223] 0.667  0.025* 0.989
X3 mMnRTS [5543] 0.723 0201  0.167*

s1  maxCE [8321] 0.660* 0.117  0.678
Sijie s2 minPE [1112] 0.499  0.035* 0.989
S3 mMNRTS  [3676] 0.103  0.256  0.333*

M1 maxCE  [8868] 0.653* 0.211  0.567
Meifu M2  min PE [1153] 0546  0.018* 0.967
M3 mINnRTS  [9575] 0.333  0.217  0.233*
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Figure1 Xinnan areain Yilan County, Taiwan
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Figure 2 Rainfall and water-level datarecorded by SNTIX during typhoon Trami
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Figure 3 Correlations between water-level and cumulative rainfall over various durations (a) Zongnanxin station (b) Xinnan
station (c) Sijie station (d) M eifu station
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Figure 4 Cross-correlations between water-level and cumulative rainfall with various time lags (10 min per lag) (a) Zongnanxin
station (b) Xinnan station (c) Sijie station (d) M eifu station (CC lessthan -0.2 is not shown)
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Figure 5 Cross-correlations of between-site water-levels with various time lags (10 min per lag) (a) Zongnanxin station (b) Xinnan
station (c) Sijie station (d) M eifu station
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Figure 6 Comparison of model predictions (3-hr lead time) and measured data (a) Zongnanxin station (b) Xinnan station (c) Sijie

station (d) Meifu station
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