
1 
 

Multi-objective optimization of typhoon inundation forecast models 
for water-level gauging network by integration of ARMAX with a 
Genetic Algorithm 
Huei-Tau Ouyang1 
1Department of Civil Engineering, National Ilan University, Yilan City, 26047, Taiwan 5 

Correspondence to: Huei-Tau Ouyang (htouyang@niu.edu.tw) 

Abstract. The forecasting of inundation levels during typhoons requires that multiple objectives be taken into account, 

including the forecasting capacity with regard to variations in water level throughout the entire weather event, the accuracy 

that can be attained in forecasting peak water levels and the time at which peak water levels are likely to occur. This paper 

proposed a means of forecasting inundation levels in real-time using monitoring data from a water-level gauging network. 10 

ARMAX was used to construct water-level forecast models for each gauging station using input variables including 

cumulative rainfall and water level data from other gauging stations in the network. Analysis of the correlation between 

cumulative rainfall and water level data makes it possible to obtain an approximation as to the cumulative duration of rainfall 

and time lags associated with each gauging station. Analyses on water levels as well as on cumulative rainfall enable the 

identification of associate sites pertained to each gauging station that share high correlations with regard to water level and 15 

low mutual information with regard to cumulative rainfall. Water level data from associate sites is used as a second input 

variable for the water-level forecast model of the target site. Three indices were considered in the selection of an optimal 

model: the coefficient of efficiency (CE), error in the stage of peak water level (ESP), and relative time shift (RTS). We used 

a multi-objective genetic algorithm to derive an optimal Pareto set of models capable of performing well in the three 

objectives. A case study was conducted on the Xinnan area of Yilan County, Taiwan in which optimal water-level forecast 20 

models were established for each of the four water-level gauging stations in the area. Test results demonstrate that the model 

best able to satisfy PE exhibited significant time shift, whereas the models best able to satisfy CE and RTS provide accurate 

forecasts of inundations when variations in water level are less extreme. 
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1 Introduction 

Typhoons are common weather events in subtropical regions of the Pacific, between July and October. Heavy rains carried 

in by typhoons often lead to the severe inundation of low-lying areas, which can damage property and even threaten the 

safety of human lives. Limitations in funding for construction of flood control systems pose limits to the protective capacity 
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of structural measures for disaster mitigation. When the scale of a typhoon exceeds construction design limits, non-structural 

means are required to prevent disasters associated with typhoons. The real-time forecasting of changes in inundation depth in 

the hours after a typhoon is a crucial factor in the planning of relief operations. 

Considerable research has been conducted on inundation simulations and forecasting techniques, most of which can be 

roughly divided into two approaches: numerical simulations and black-box modellings. In numerical simulations, various 5 

physical phenomena that occur between rainfall and inundation are examined before carrying out theoretical derivations 

using mathematical analysis, after which solutions are obtained by numerical methods. This approach is based on a sound 

theoretical foundation and enables a clear representation of the physical mechanisms associated with inundation. The 

accuracy of the results makes them particularly useful in the forecasting of inundation in the absence of onsite observation 

data. However, this type of approach requires considerable computing resources and can be very time-consuming, which 10 

makes it difficult to provide forecast information in real-time for immediate disaster relief actions during typhoons. Black-

box modellings are implemented in an entirely different manner. The process that occurs between rainfall and inundation is 

regarded as a black box, and no attempt is made to understand the underlying physical mechanisms. Rather, the relationships 

between inputs and outputs of the system are analyzed as a means of creating a black-box model. Although this approach is 

unable to explain the physical phenomena, however, it provides an accurate representation of the relationship between inputs 15 

and outputs. Calculations can generally be completed more rapidly (Karlsson and Yakowitz, 1987), and information related 

to future variations in water-level in inundated areas can be obtained in real-time, which can be immensely helpful to 

decision making and disaster prevention. 

A number of studies have applied black-box models to the problems of inundation or flooding. Karunanithi et al. (1994) 

proposed a cascade-correlation algorithm for the selection of neural network architectures and a training algorithms and 20 

obtained encouraging results with regard to flow prediction. Thirumalaiah and Deo (1998) proposed the training of neural 

networks using a selected sequence of previous flood observations at a specific location to enable real-time flood forecasting. 

Toth et al. (2000) compared the advantages and limitations of Auto-Regressive Moving Average (ARMA), Artificial Neural 

Network (ANN), and the non-parametric nearest-neighbors method in rainfall-runoff forecasting. They concluded that time-

series analysis is far more accurate than simple rainfall predictions of a heuristic nature. Change and Chen (2001) proposed a 25 

counter-propagation fuzzy-neural network (CFNN) capable of automatically generating rules for use in clustering input data 

to enable streamflow prediction. Nayak et al. (2005) employed fuzzy computation in the development of a real-time flood 

forecasting model. They concluded that the recursive use of a one-step-ahead forecast model to predict flow using longer 

lead times produces results better than those achieved using independent fuzzy models for the forecasting of flow under 

various lead times. Chen et al. (2005) constructed a flood forecast model using an adaptive neuro-fuzzy inference system 30 

(ANFIS). Their results demonstrated that ANFIS is superior to back-propagation neural network (BPNN). Romanowicz et al. 

(2008) developed a data-based mechanistic methodology tfor the derivation of nonlinear dependence between water levels 

measured at gauging stations along a river. Kia et al. (2011) developed a flood model using various flood causative factors 

using ANN techniques and geographic information system (GIS) for the modeling and simulation of flood-prone areas in the 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-1, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 23 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



3 
 

southern parts of Peninsular Malaysia. Pan et al. (2011) presented a real-time rainfall-inundation forecasting model using a 

hybrid neural network based on a synthetic database of inundation potential. Shiri et al. (2012) compared the performance of 

gene expression programming (GEP), adaptive neuro-fuzzy inference systems (ANFIS), and artificial neural networks 

(ANNs) in the forecasting of daily stream flow. They concluded that the GEP model outperformed the ANN and ANFIS 

models. Chen et al. (2012) utilized an ANN model and an ANFIS model to correct calculations in a two-dimensional 5 

hydrodynamic model used for the prediction of storm surge height during typhoon events. Najafzadeh and Zahii (2015) 

proposed the use of a neuro-fuzzy-based group method of data handling (NF-GMDH) as an adaptive learning network for 

the prediction of flow discharge in straight compound channels. 

In this study, we sought to develop a method for the forecasting of inundation levels, based on data from a water-level 

gauging network during typhoons. We also performed a case study in which crucial model input variables were obtained by 10 

analyzing records from previous typhoons. Autoregressive moving average with exogenous inputs (ARMAX) was used to 

construct rainfall and water-level relationship models of the gauging stations, and three indices were defined for the 

evaluation of model performance. A Pareto optimal model set was identified for the three indices using a multi-objective 

genetic algorithm. Predicted water levels were compared with measured data to exam the performance of the optimal models 

subjected to each index. 15 

This paper is organized as follows. The environmental background of the study area is introduced in Section 2. In Section 3, 

we explain ARMAX and the data analysis methods used to find suitable model input variables. We also introduce the indices 

used for the evaluation of the models. Section 4 presents the method used to identify the Pareto optimal model set for the 

evaluation indices using a multi-objective genetic algorithm. Section 5 discusses the forecasting capability of the optimal 

models for each objective based on search results. Conclusions follow in Section 6. 20 

2 Study area 

Yilan County (Fig. 1) is situated in the northeastern part of Taiwan. It has a sub-tropical monsoon climate and is famed for 

its rainy weather. With over 200 rain days per year, the annual average precipitation ranges between 2000 and 2500 mm. 

Yilan is bordered by mountains to the west and the ocean to the east. Typhoons are common in summer and autumn. 

Statistically, an average of two to three typhoons hit Taiwan each year, 45% of which make landfall in Yilan County (Pan et 25 

al., 2014). Severe inundations quickly form in low-lying areas during typhoons. Among the inundation-prone regions, the 

area of Xinnan is one of the worst. 

The Xinnan area (Fig. 1) is located near the mouths of two major waterways in the county: the Meifu drainage waterway to 

the north and the Lanyang River to the south. Flat terrain dips to the east, and its eastern border abuts the Pacific. The 

average elevation in the area is just about 2 m above sea level. During typhoons, water levels in the two major waterways 30 

rise swiftly from large inflows upriver. The levees of the two waterways prevent runoff in the area from being drained out 
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effectively, which soon leads to severe inundation.  The safety and property of residents are in risk during typhoons, which 

underlines the need for effective disaster prevention measures. 

In an attempt to better understand local inundation conditions during typhoons, the Water Resources Agency established the 

Surveillance Network for Typhoon Inundation in the Xinnan Area (SNTIX) in 2011. The Network includes four gauging 

stations receiving water-level data on-site the area, and a data transmission system receiving precipitation observation data 5 

from the QPESUMS (Quantitative Precipitation Estimation and Segregation using Multiple Sensor, Gourley et al., 2002) of 

the Central Weather Bureau. Table 1 lists detailed information related to the gauging stations, the locations of which are 

marked in Fig. 1. SNTIX reports local inundation levels via radio transmission every 10 minutes during typhoons, while 

QPESUMS transmits ten-minute rainfall in the area via internet connection at the same frequency. Figure 2 presents the 

water levels recorded by SNTIX at gauging stations and the QPESUMS rainfall data during Typhoon Trami in 2013. 10 

QPESUMS was developed jointly by the Central Weather Bureau and the National Severe Storm Laboratory (NSSL) in 

2002, with a view to improving the accuracy of quantitative rainfall forecasts. QPESUMS comprises eight Doppler radar 

stations, each of which scans a radius of approximately 230 km. The system divides Taiwan into 441×56 grids, each 

covering 1.25×1.25 km2. Rainfall estimation is achieved by obtaining readings from 406 rainfall gauges and 45 ground 

stations for adjustments. QPESUMS forecasts future rainfall patterns by predicting the movement paths of cloud cells. Data 15 

is provided for a wide range of applications, including typhoon rainfall forecasts (Lee et al., 2006), river flooding forecasts 

(Vieux et al., 2003), and landslide forecasts (Chen et al., 2004). 

Since its implementation, SNTIX has recorded data from ten typhoon events, as shown in Table 2. In addition to providing 

rainfall and water level information at the time of the typhoon, these records can also be used to develop water-level forecast 

models for gauging stations. 20 

3 Model construction 

To plant effective disaster prevention and relief operations during typhoons, it is crucial that one has the capacity to forecast 

inundation levels developing in the following hours. In the Xinnan area, inundation develops swiftly during typhoons, so 

forecasting must be quick and effective in order to provide sufficient lead time for decision making and operational planning. 

Thus, we adopted the ARMAX black-box model for the construction of water-level forecast models for gauging stations. It 25 

should be noted that during typhoons, response plans rely more heavily on water-levels than on runoff. We therefore based 

the forecast model on this study in the relationship between rainfall and water level rather than on the relationship between 

rainfall and runoff, as was common in many studies. Moreover, the rainfall and water level data in this study was not 

processed in the conventional manner, in which the data is normalized by the maximum and minimum values before 

performing model regression, considering the fact that these information cannot be obtained while a typhoon is in progress. 30 

To enable real-time water-level forecasting during typhoons, we designed the water-level forecast model using raw rainfall 

and water level data as inputs with the forecast water level of the next time step as the output. 
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3.1 ARMAX model 

ARMAX (Box and Jenkins, 1976) is a linear black-box model that merges the AR model (Yule, 1927) and MA model 

(Slutsky, 1937) for time series analysis. It takes into account the influence of other external variables in the forecasting of 

future changes in dynamic systems. The model is as follows: 

�������� = ∑ 	
����
�� − 
�
� + ����������
��  ,                  (1) 5 

where � denotes the output of the system, �
 stands for the exogenous input for input �, 
� indicates the number of inputs, 


�
 is the time lag for each input, � is the error term, and ����, 	
���, and ���� are the polynomial functions composed of 

time-shift operator �. 

In this study, � represents the water levels recorded at the gauging stations. To make full use of monitoring data from the 

surveillance network, each water level model contains two exogenous inputs: rainfall data �� from QPESUMS and water 10 

level data �� from an associate gauging station. The structure of the model is determined by the number of terms in the four 

polynomial functions ����, 	����, 	����, and ���� and the time lags of the two exogenous inputs, 
��  and 
�� . The 

coefficients of four polynomial functions ����, 	����, 	����, and ���� can be obtained by calibrating rainfall and water 

level data. 

3.2 Determination of input variables 15 

In this study, we set the cumulative rainfall as the first input variable. After calculating the cumulative rainfall of various 

durations from 1 hour to 30 hours, the results are subjected to correlation analysis using water level data from the target site 

to derive the correlation coefficient (CC), which is defined as 

CC�x, y� = ���� ,!�
"#"$ = ∑ � %& ̅��!%&!(�)%*+

,∑ � %& ̅�-)%*+ ,∑ �!%&!(�-)%*+
 ,                  (2) 

where ./0 refers to the covariance between variables 1 and �; 2  and 2! are the standard deviations of 1 and �, respectively, 20 

and 
 denotes the number of data points. CC ranges from -1 to 1, which respectively indicate perfect negative correlation 

and perfect positive correlation between 1 and �, while a CC value of 0 indicates the complete absence of correlation. 

Figures 3(a) through 3(d) present the results of correlation analysis pertaining to water-level data from various gauging 

stations and cumulative rainfall of various durations. The black round dots in the figures mark the average CC values of each 

typhoon event, and the tops and bottoms of the bars indicate the maximum and minimum CC values among the events. The 25 

variations in the average CC in the figures clearly show that the average CC increases with the duration of cumulative 

rainfall, reaches a peak, and then declines gradually. This phenomenon is apparent in all of the gauging stations. However, 

the duration of cumulative rainfall corresponding to the peak average CC can vary. Table 3 lists the peak average CC, the 

corresponding duration of cumulative rainfall, and the maximum and minimum CCs measured at each station. As can be 

seen, the peak average fluctuates roughly between 0.7 and 0.9, which indicates that a certain degree of correlation exists 30 
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between water level and cumulative rainfall at the stations. The table also shows that the duration of cumulative rainfall 

corresponding to the peak average CC is longer in stations located further downward in the area.  For instance, the duration 

of cumulative rainfall corresponding to the peak average CC at the Zonnanxin station, which is at higher ground in the area, 

is 18 hr, whereas the duration at the Meifu station, which is closest to the sea, is 25 hr. We speculate that this might be 

associated with the time needed for water to aggregate and move downward. The table also presents a slight decrease in the 5 

peak average CC as the station falls closers to the sea as well as a greater difference between the maximum and minimum 

CC values. It is possible that this is because water levels at locations closer to the sea are influenced by ocean tides, which 

somewhat reduces its correlation with cumulative rainfall. 

After identifying the duration of cumulative rainfall with the highest correlation for each gauging station, we analyzed the 

time lags between water levels and cumulative rainfall. We shifted back the cumulative rainfall data one time step at a time 10 

(each time step is 10 minutes) and calculated the CCs between water level and cumulative rainfall for each station. Figures 

4(a) through 4(d) display the results of cross-correlation analysis for water levels and cumulative rainfall at each station. As 

can be seen, the peak average CC for each station occurred at zero lag, and the average CC decreases as the leg lengthened.  

This indicates that no time lag exists between water level and cumulative rainfall. Furthermore, the figures show that as the 

lag increased, not only the average but also the maximum and minimum CCs decreased, and the difference between the 15 

maximum and minimum CCs (∆CC) gradually increased. This demonstrates that for all events the correlation between water 

level and cumulative rainfall during typhoons diminishes with the length of the lag. 

To make full use of the water level records from the gauging stations, we identified an associate station for each existing 

station and used the water levels from the associate station as a second input variable of the forecast models. Generally 

speaking, the input and output of a model require a higher degree of correlation, while in between the input variables a lower 20 

mutual information (MI) is expected (Bowden et al., 2005; Talei et al., 2010; Maier et al., 2010) in order to ensure that the 

information provided to the model from the inputs are not redundant.  MI is defined as 

MI�x, y� = �
� log�|:##|;:$$;

: � ,                    (3) 

where C is the covariance matrix defined as 

C = <�  � !
�! �!!= ,                      (4) 25 

where �   and �!! are the variance of variables 1 and �, respectively; � ! and �!  are the covariance of variables 1 and �; 

and |�| is the determinant of the covariance matrix. An MI value equal to 0 indicates complete independence between 1 and 

�, while a higher MI value indicates stronger dependence between 1 and � (Fraser and Swinney, 1986; Moon et al., 1995). 

To find an associate site with which the water-level data has a high CC with that of the target site while having a low MI 

with the identified cumulative rainfall of that specific site, we combined the two indices into 30 

R = CC + �1 − MI� ,                     (5) 
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The MI value presents the degree of dependence between the input variables; i.e., 1-MI reflects the degree of independence 

between input variables. The candidate site with the highest R value was designated as the associate site for a given target 

site. This approach in which MI is taken into account in the selection of model inputs has been employed in previous studies 

(Talei et al., 2010; Elshorbagy et al., 2010; He et al., 2011).  

Table 4 lists the event-averaged CCs between water level data from each target site and their candidate sites, as well as the 5 

event-averaged MI of the first input variable (i.e., identified cumulative rainfall) of the target site and the water level data 

from the candidate sites. The table also presents the R values for each pair of sites. The asterisk notes the highest R values 

for each site, and the corresponding candidate sites were those selected as associate sites. The associate sites that were 

eventually selected for each target site are displayed at the bottom of Table 4. 

To elucidate the meaning of the time lag prior to variations in water level data from target sites and their associate sites, we 10 

followed the previous analysis method in shifting water level data from the associate sites one time step at a time. We then 

calculated the CCs between the water level data from the target site and the associate site until we reached 30 time steps. The 

results in Fig. 5 show that the event-averaged CCs are all highest at zero lag. As the lag increases, the average, maximum, 

and minimum CCs of each station decrease, and the difference between the maximum and minimum CCs gradually increases. 

This is a clear indication that no time lag exists between variations in water level measured at target sites and at their 15 

associate sites. 

The above data analysis makes it possible to determine the input variables of the water level models for each station as well 

as their time lags, as shown in Table 5. The first input variable is cumulative rainfall, and the duration of cumulative rainfall 

in the various stations are not the same; however, all of the time lags are 0. The second input variable is water level data 

from the associate site for which the time lags are also 0. 20 

3.3 Model evaluation 

The performance of each model was evaluated using the three indices below. 

(1) Nash-Sutcliffe Coefficient of Efficiency (CE) 

The Nash-Sutcliffe Coefficient of Efficiency was proposed by Nash and Sutcliffe (1970) to assess the forecasting capacity of 

hydrological models. It is defined as 25 

CE = 1 − ∑ A!BCD�E�&!FDG�E�H-)G*+
∑ A!BCD�E�&!(BCDH-)G*+

 ,                    (6) 

where y�IJ  and yKJE  denote the observed and estimated water levels; �(�IJ  is the average observed water level, and 
 

indicates the number of data items. The CE value represents the goodness of fit between the observed data and the forecast 

results of the model; a CE value closer to 1 means that the water-level forecasts more closely match the observation data. 

(2) Error in the stage of peak water-level (ESP) 30 
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ESP = ;!N,FDG&!N,BCD;
ON,BCD  ,                     (7) 

In the formula above, yP,�IJ and yP,KJE denote the peak observed and estimated water levels, respectively, and QP,�IJ is the 

peak observed water depth. ESP represents the error between the peak observed water level and the forecast results of the 

model. A smaller ESP value means that the estimated peak water levels more closely match the observed values. 

(3) Relative Time Shift (RTS) 5 

Previous researches have shown that using historical data to forecast future changes often results in time shift errors between 

the forecast and measured hydrographs (Dawson and Wilby, 1999; Jain et al., 2004; de Vos and Rientjes, 2005). To evaluate 

the time shift error of forecast water levels, we shifted the forecast water level hydrograph back by 1 to 18 time steps and 

then calculated the CE values. The time step corresponding to the highest CE value is the time shift error (δ) of the water 

level model. This method was also adopted by de Vos and Rientjes (2005) and Talei et al. (2010). The relative time shift 10 

(RTS) of the models in this study was defined as 

RTS = S
TG ,                      (8) 

where δ denotes time shift error of the model, and VE is the prediction lead time of the model. A smaller RTS refers to a 

smaller time shift error between the forecast and observed water levels. 

3.4 Cross validation 15 

We adopted cross validation (Geisser, 1993) for typhoon event validation and model calibration in this study. We selected 

single typhoon events for validation with the rest typhoon events for model calibration. In turn, all of the typhoon events 

were validated. The calculation of evaluation indices were based on the validation results of each typhoon. The mean values 

for all validated events produced the average performance of the models.  

4 Multi-objective optimization problem 20 

For the evaluation of model performance, we used three indices: CE (to assess the capacity of a model to simulate entire 

typhoon events), PE (to assess peak water levels), and RTS (to determine the time at which a peak water level occurs). These 

elements are crucial to disaster prevention operations during typhoons and must therefore be considered simultaneously. 

Unfortunately, it is difficult to weigh the importance of each element. Thus, we employed multi-objective optimization to 

search for models capable of performing well in all three indices. 25 

4.1 Objective functions and Design variables 

The design goals included a larger CE and smaller PE and RTS. Thus, we defined the objective function as follows: 

Objective 1:  minimize  �1 − �W((((� ,                   (9) 
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Objective 2:  minimize  XW(((( ,                  (10) 

Objective 3:  minimize  YZ[((((( ,                  (11) 

where �W((((, XW((((, and YZ[((((( denote the typhoon-event averages of the three indices. 

As mentioned previously, the structure of the ARMAX model is determined by the polynomial functions ����, 	����, 	����, 

and ���� and the time lags of the two exogenous inputs, 
�� and 
��. The time lags, 
�� and 
��, can be derived from 5 

previous data analysis. The analysis of time lag between cumulative rainfall and water levels at the associate site shows that 

the time lags between the two inputs and the output of the model are both 0. QPESUMS is able to provide forecasts on 

rainfall in the following time step; therefore, we set 
�� to 0 in order to incorporate the rainfall predictions provided by 

QPESUMS within the models. Because we have only real-time monitoring values (rather than forecast values), for the water 

level at associate sites, therefore, we set 
�� to 1. Thus, the structure of the model is determined by the remaining number of 10 

terms in the polynomial functions ����, 	����, 	����, and ����. Thus, we set the design variables as the number of terms in 

the four polynomial functions, which are integers and limited the range of each design variable to between 1 and 10 in order 

to preserve the simplicity of the model. 

4.2 Multi-objective Genetic Algorithm 

A lack of continuous relationships between the structure of the model and the objective function makes it impossible to 15 

obtain the optimal value of this problem using a gradient-based method. Based on the characteristics of the problem, we 

employed a genetic algorithm (GA) as a tool for optimization, due to the fact that GAs do not require the Hessian matrix of 

the objective function to derive the optimal solution for each design variable. Furthermore, the fact that GAs can search for 

global optimums (Goldberg, 1989) makes this an extremely suitable approach to the identification of an ideal model. 

GAs are based on Darwin's theory of natural selection. Since Holland (1973) developed a sound mathematical foundation 20 

based on this principle, GAs have been widely applied in a variety of fields to solve problems that could not otherwise be 

solved using conventional methods. In GAs, the individuals in a group are viewed as possible solutions to the problem under 

discussion. The individuals are rated according to their performance as they pertain to the objective functions and constraints. 

Superior performance increases the chance of passing on genes to the next generation. Through this process, the overall 

performance of the population gradually evolves and improves. After evolving for several generations, individuals with 25 

optimal genes (i.e., those that dominate the population), are adopted as the optimal solutions to the problem. GAs conduct 

optimization by assessing the performance of individuals in the population, which makes them ideally suited to solving 

problems with multiple objectives. 

We employed the multi-objective genetic algorithm in Matlab to search for the Pareto optimal set of the integer multi-

objective optimization problem. The optimal model set contains models that perform well in all three indices. We set the 30 

population size at 50 and the Pareto fraction at 0.35. The maximum number of evolutionary generations was 200, and the 

GA was set to terminate after the results stalled for more than 20 generations. 
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5 Result and discussion 

The result of the multi-objective genetic algorithm is a Pareto optimal set. All of the models in this set are un-dominated, 

which means that at least one of their three indices (CE, PE, and RTS) is not surpassed by that of any other model. We 

selected the models with the best performance in all three indices from the Pareto optimal set, the results of which are as 

shown in Table 6. We listed three models for each gauging station and named them according to their location. For example 5 

the models for Zongnanxin station are Z1, Z2, and Z3. Among the three model types, Model Type 1 achieved the highest 

average CE, Model Type 2 achieved the lowest average PE, and Model Type 3 achieved the lowest average RTS. The table 

lists four integer design variables for each model, respectively indicating the number of terms in ����, 	����, 	����, and 

����. The table also displays the scores of each model type on the three indices, wherein the score marked with an asterisk 

achieved the optimal value for that index. 10 

Using data from Typhoon Saola, a water-level forecast was performed using the models of each gauging station with a lead 

time of 3 hr. We then compared the results with the observed values, as is shown in Figs. 6(a) through 6(d). The results in 

Fig. 6(a) show that the forecast water levels from the three models of the Zhongnanxin station (furthest from the sea), are 

roughly identical to the observed water levels, indicating that the forecast results are very accurate. No significant differences 

were observed among the forecast results of the three model types.  15 

The forecast results of the other three gauging stations in Figs. 6(b), 6(c), and 6(d) by the three types of models present 

different characteristics. Model Type 2 (X2, S2, and M2) shows good performance in predicting peak water levels while 

exhibiting a time shift between the measured water levels and the water levels forecast. Model Type 2 emphasizes the need 

to minimize error in peak water levels; therefore, it is likely that variations in the water level forecasts from this model 

closely follow the changes in measured water levels with a certain degree of lag. In contrast, Model Type 1 (Z1, X1, S1, and 20 

M1) differs little from Type 3 (Z3, X3, S3, and M3) in Figs. 6(b), 6(c), and 6(d), both of which achieve perfect forecasts as 

water levels dropped but produce slight time lags as water level rose. This is particularly apparent at the Sijie station in Fig. 

6(c) and at the Meifu station in Fig. 6(d), where water levels rose swiftly. However, the time shift errors presented by Model 

Types 1 and 3 are still smaller than 3 hr. Considering that the lead time used in these model forecasts was 3 hr, any time shift 

error of less than 3 hr means that the results retain reference value for disaster prevention operations during typhoons. 25 

In the forecasting of peak water levels, the results in Figs. 6(b), 6(c), and 6(d) show Model Type 2 is superior over Model 

Types 1 and 3. On the other hand, in forecasting the time at which peak water levels are likely to occur, Model Types 1 and 3 

are more accurate at all four stations. The ability to accurately determine the peak water levels as well as the arrival time of 

the peaks is extremely helpful for response operations during typhoons. All the three models provide valuable information 

and thus should all be considered in practice. 30 
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6 Conclusion 

This study developed a simple approach to the forecasting of variations in inundation levels during typhoons. The proposed 

method uses a network of water-level gauging station in conjunction with rainfall forecast data. ARMAX was used to 

construct water-level forecast models at each gauging site. Suitable input variables and lags in the water-level models were 

identified by analyzing historical data from typhoons in the past. A multi-objective genetic algorithm was used to derive a 5 

Pareto optimal set of models capable of performing well in three indices (CE, PE, and RTS) as well as to identify the water-

level forecast model that obtained the best results at each gauging station. Comparisons with measured water levels shows 

that the model emphasizing PE resulted in accurate prediction on the peak water levels yet noticeable time lag. The models 

emphasizing CE and RTS provided an accurate indication of variations in water levels with no lag while water levels were 

dropping, yet a slight time lag when water levels were rising. The models emphasizing CE or RTS displayed good 10 

performance in forecasting the time at which peak water levels would occur, while the models emphasizing PE show good 

prediction on peak water levels. All three types of models provide information crucial to disaster prevention and relief 

operations in a timely manner during typhoons and thus should all be considered in practice. 
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Table 1 Water-level gauging network in Xinnan area 

Gauging station 
Location Elevation above sea 

level (m) Longitude Latitude 

Zhongnanxin 121.7877 24.7239 1.94 

Xinnan 121.8012 24.7250 0.78 

Sijie 121.8083 24.7234 0.13 

Meifu 121.8156 24.7191 0.23 

 

Table 2 Historical typhoon events recorded by SNTIX 

Typhoon Year 
Time of official typhoon 
sea warning issued 
h/day/month (UTC) 

Affecting 
period (hr) 

Cumulative 
 rainfall (mm) 

Maximum 
rainfall 
intensity 
(mm/hr) 

Songda 2011 0230/27/May 36 191.6 28.5 

Nanmadol 2011 0530/27/Aug 99 159.6 26.5 

Saola 2012 2030/30/Jul 90 506.1 35.5 

Soulik 2013 0830/11/Jul 63 138.0 30.0 

Trami 2013 1130/20/Aug 45 160.1 21.5 

Usagi 2013 2330/19/Sep 63 158.2 24.0 

Matmo 2014 1730/21/Jul 54 107.5 34.0 

Fung-wong 2014 0830/19/Sep 72 79.5 37.5 

Soudelor 2015 1130/6/Aug 69 462.5 86.0 

Dujuan 2015 0830/27/Sep 57 226.0 41.5 

 

Table 3 Correlation coefficient (CC) between water-level and cumulative rainfall with average peak and the associated duration of 
cumulative rainfall  

Gauging site 
CC between water-level and cumulative rainfall Duration of 

cumulative rainfall 
(hr) 

Average peak Maximum Minimum ΔCC 

Zongnanxin 0.910 0.952 0.856 0.096 18 

Xinnan 0.822 0.956 0.651 0.305 20 

Sijie 0.698 0.973 0.297 0.675 20 

Meifu 0.724 0.963 0.014 0.948 25 
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Table 4 Selection of associate site for the second model input based on ]](((( and ^_(((( 

Candidate site 

Target site 

CC(((( between cross-site water-levels 
 

MI(((( between water-level input from 
candidate site and cumulative rainfall 

input for target site  
R (* highest) 

Zongnan
-xin 

Xinnan Sijie Meifu 
 
Zongnan-

xin 
Xinnan Sijie Meifu 

 
Zongnan-

xin 
Xinnan Sijie Meifu 

Zongnanxin NA 0.815 0.763 0.703 NA 0.695 0.655 0.589 NA 1.120 1.108 1.114 

Xinnan 0.815 NA 0.944 0.951 0.880 NA 0.721 0.657 0.935 NA 1.223* 1.295* 

Sijie 0.763 0.944 NA 0.949 0.880 0.766 NA 0.657 0.883 1.178 NA 1.292 

Meifu 0.703 0.951 0.949 NA 0.678 0.814 0.728 NA 1.024* 1.137* 1.221 NA 

        Selected associate 
site 

 Meifu Meifu Xinnan Xinnan 

 

Table 5 Input variables for the water-level forecast models 

Gauging site 

Inputs 

Cumulative rainfall (mm)  Water level (m) 

Duration (hr) Lag   Associate site Lag 

Zongnanxin 18 0  Meifu 0 

Xinnan 20 0  Meifu 0 

Sijie 20 0  Xinnan 0 

Meifu 25 0  Xinnan 0 
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Table 6 Models selected from the Pareto optimal model set using the best scores for each of the three objectives (* best score) 

Gauging site Model Objective Design 
variables 

CE(((( PE(((( RTS(((((( 

Zongnanxin 

Z1 max CE(((( [9 9 4 8] 0.815* 0.144 0.422 

Z2 min PE(((( [1 4 1 1] 0.732 0.033* 0.844 

Z3 min RTS(((((( [10 10 8 6] 0.692 0.194 0.356* 

Xinnan 

X1 max CE(((( [10 4 6 3] 0.820* 0.062 0.378 

X2 min PE(((( [1 2 2 3] 0.667 0.025* 0.989 

X3 min RTS(((((( [5 5 4 3] 0.723 0.201 0.167* 

Sijie 

S1 max CE(((( [8 3 2 1] 0.660* 0.117 0.678 

S2 min PE(((( [1 1 1 2] 0.499 0.035* 0.989 

S3 min RTS(((((( [3 6 7 6] 0.103 0.256 0.333* 

Meifu 

M1 max CE(((( [8 8 6 8] 0.653* 0.211 0.567 

M2 min PE(((( [1 1 5 3] 0.546 0.018* 0.967 

M3 min RTS(((((( [9 5 7 5] 0.333 0.217 0.233* 
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Figure 1 Xinnan area in Yilan County, Taiwan 
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Figure 2 Rainfall and water-level data recorded by SNTIX during typhoon Trami 
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(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 3 Correlations between water-level and cumulative rainfall over various durations (a) Zongnanxin station (b) Xinnan 
station (c) Sijie station (d) Meifu station 
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(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 4 Cross-correlations between water-level and cumulative rainfall with various time lags (10 min per lag) (a) Zongnanxin 
station (b) Xinnan station (c) Sijie station (d) Meifu station (CC less than -0.2 is not shown) 
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(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 5 Cross-correlations of between-site water-levels with various time lags (10 min per lag) (a) Zongnanxin station (b) Xinnan 
station (c) Sijie station (d) Meifu station 
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(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 6 Comparison of model predictions (3-hr lead time) and measured data  (a) Zongnanxin station (b) Xinnan station (c) Sijie 
station (d) Meifu station 
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